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The Nuclear Data Program at the 
Gaerttner LINAC Center

• Driven by a 60 MeV pulsed electron LINAC ~1012 n/s

• Neutron transmission

– Resonance region: 0.001 eV- 1000 keV, 

– High energy region: 0.4- 20 MeV

• Neutron Capture

– Resonance region: 0.01-1000 eV

– New detector array at 45m: 1 keV ~ 500 keV

• Neutron Scattering

– High energy region: 0.4 MeV- 20 MeV

• Prompt Fission neutron spectrum

• Lead Slowing Down Spectrometer 

– Fission cross section and fission fragment 
spectroscopy.

– (n,a), (n,p) and (n,g) cross sections on small 
(radioactive) samples.
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Summary of Related Activity

• 235U fission and capture yield up to 3 keV.
– Data was delivered to Leal (ORNL) for inclusion in the 

evaluation.

• 56Fe - high resolution transmission, 0.5-20 MeV 
– Data was delivered to Leal (ORNL) for inclusion in the 

evaluation.

• Neutron scattering 0.5-20 MeV
– Data on 238U published.
– Data on Fe finalized, publication in process.

• Prompt fission neutron measurements
– Data on 238U in progress.
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Neutron Scattering 

• Provide accurate benchmark data for 
scattering cross sections and angular 
distributions in the energy range 
from 0.5 to 20 MeV

• Can be developed to provide 
differential elastic and inelastic 
scattering cross section 
measurements

• Design a flexible system: now also 
used for fission neutron spectra 
measurements
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TOF Scattering Yield Measurement

L1,t1,E1

L2,t2,E2

• Measure the total TOF t=t1+t2

• For all scattering events E2<E1

• In most cases the energy loss is small E1~E2

• Since t1>>t2 and E1~E2 then for presentation 
the incident neutron energy E1 is calculated 
using t and L=L1+L2
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Scattering Detection System: Experimental Setup

Low mass sample 

holder
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Flux Shape Measurement

• Use a fission chamber with 
~391 mg 235U in the sample 
position

• Use ENDF/B-VII.1 fission 
cross section for 235U

• Correct for transmission of 
all materials between the 
source and sample

• Compare to a similar 
measurement using EJ301 
and SCINFUL calculated 
efficiency

• Combine the two data sets 
using fission for E< 1 MeV
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Efficiency as a Function of Energy
• Objective: 

– MCNP simulation of EJ301 
response in the sample position 
must precisely agree with the 
measurement

• Methodology:
– Use the measured flux as a source 

in MCNP simulation of the in-
beam detector response

– In MCNP set the detector 
efficiency h=1 (tally only the 
neutron flux shape)

– Divide the measured response by 
the simulation results to get the 
efficiency h(E) for each detector

– During the experiment periodic 
gain calibrations are done to 
minimize gain shift.
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• Sum all files and dead time correct.

• The experimental count rate corrected for background and

false neutrons:

Data Reduction
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MCNP Simulation Geometry
• Use ASAP (As Simple As Possible) approach

• Use array of point detector tally F5 to model the EJ301 detector

– Convolute the tally with the detector efficiency

• Include ¾” Depleted U filter in the simulation

• Include windows (Al)

• Include recent improvements of vacuum tube near the sample

Vacuum
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Graphite Reference Results

• Differences between experimental data and MCNP calculations
(ENDF/B-VII.1/JEFF-3.1) used to estimate systematic uncertainties
– Systematic uncertainty ~ 2.6%
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natFe Scattering - 61°

Library FOM

ENDF/B-VII.1 13.67

JEFF-3.1 13.45

JENDL-4.0 10.97
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natFe Scattering - 153°

Library FOM

ENDF/B-VII.1 14.42

JEFF-3.1 20.31

JENDL-4.0 14.68

Reference FOM

Graphite 1.94
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Observations for natFe

• The JENDL-4.0 evaluation had best overall 
agreement with experimental data from 0.5 to 
20 MeV for all angles.

• Experimental data can be analyzed further to 
provide:

– Inelastic to Elastic Scattering Ratios

– Elastic (only) Scattering Contribution
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Inelastic to Elastic scattering Ratio
EJ-301 Response Functions
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• Detector in-beam measurements were used to develop 
response functions for energies 0.4 < E(t) < 2.0 MeV
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Inelastic to Elastic Ratio natFe
• Select an energy region (shown between the two black vertical)

• Fit in-beam response functions, fel(I) and finl(I), to known levels

R(I)= A ∙ fel(I) + (1 – A) ∙ finl(I) Ratio = 
(1 – A)

A
A – Fitted elastic fraction
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Inelastic to Elastic Ratio

• Multiple scattering effects included in MCNP simulations
• Statistical and systematic uncertainties included in analysis
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• The response function fitted method does not easily extend to high energy resolution 
data and a new method was developed

• The goal is to isolate only the elastic scattering:

– Cut pulses with integral less than the discrimination. 

– Correct for the elastic shape that was discriminated.

– Method is insensitive to inelastic to elastic ratios.
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Elastic Scattering vs MCNP simulation

• Elastic scattering can be measured from 0.5 to 2.0 MeV

• Only elastic scattering contribution measured and simulated

• Collaborating with ORNL to improve new 56Fe evaluation
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Prompt Fission Neutron Spectra
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The Gamma Tagging Method
• Use the double TOF method

• Use a gamma tag for fission (instead of traditional fission chamber)

• Use a combination of Liquid Scintillators and Li-Glass neutron detectors

Electron LINAC
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Experimental Setup
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• Neutron Detectors
– EJ-204 Plastic Scintillator 

• 0.5” x 5”
• 47 cm away from center of sample

– 2 EJ-301 Liquid Scintillators 
• 3” x 5”
• 50 cm away from center of sample

• Gamma Detectors
– 4 BaF2 detectors on loan from ORNL
– Hexagonal detectors 2” x 5”
– 10 cm from center of sample
– ¼” lead shield between detectors 

• Reducing scattering between detectors
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Gamma Tagging - EJ-204
• Gamma tagging method corrected for 30% detection efficiency compared

to 83% detection efficiency with fission chamber
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252Cf Prompt Fission Neutron 
Spectrum Low Energy

• Low energy data taken with 

0.5” EJ-204 plastic 

scintillator

• RPI data show good 

agreement to Lajtai, Blinov

data and ENDF evaluation

• Thin plastic detector allows 

for measurement down to 

50 keV

• Gamma tagging method 

accurately reproduces 

PFNS for 252Cf

E. Blain, A. Daskalakis, and Y. Danon, ”Measurement of Fission Neutron

Spectrum and Multiplicity using a Gamma Tag Double Time-of-Flight Setup”,

invited talk, International Conference on Nuclear Data for Science and

Technology, New York, New York, March 4-8, 2013.
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238U Prompt Fission Neutron Spectrum High Energy
Preliminary Results

• Spectrum is normalized to 

ENDF/B-VII.1 at 1.2 

MeV

• Spectrum is integrated 

over all incident time-of-

flights

• Preliminary data show 

good agreement with 

current evaluations

• Increase near 1 MeV 

agrees with new data by 

Sardet et. al. (as presented in the 

FIESTA 2014 fission workshop at LANL)0.5 1 8
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PFNS for two incident energy groups
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• Data shown above and below the 2nd fission barrier

• Above the 2nd barrier – some indication of increased yield 
below 1 MeV

0.5 1 10
10

-9

10
-8

10
-7

10
-6

3x10
-6

P
F

N
S

 [
1
/M

e
V

]

Energy [MeV]

 Experiment E
n
=1.5-5.5 MeV

 ENDF/B-VII.1



28
Mechanical, Aerospace and Nuclear Engineering The Gaerttner LINAC Center

Summary
• Neutron scattering in the energy range from 0.5-20 was measured 

for Fe and 238U at several scattering angles.
– Data and MCNP simulation were used as benchmark for cross section and angular 

distribution evaluations.
– Based on FOM the 238U and natFe data is in best agreement with the JENDL-4 

evaluations.
– Inelastic to elastic scattering ratio were obtained for the 1st excited state and 

compared with evaluations. All evaluations agree with experimental data within 1-2 
times the experimental uncertainty.

• Prompt fission yields were measured using the gamma tag 
method
– 252Cf measured fission neutron spectrum below 1 MeV is in good agreement with 

evaluations
– Experimental results for 238U provide some information about the change in the 

PFNS as a function of energy.
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Thank You


